Strict syntax of type theory via alpha-normalisation

Viktor Bense ~ Ambrus Kaposi ~ Szumi Xie
Eobtvés Lorand University

11 June 2024
TYPES, Copenhagen

Thanks to EuroProofNet COST Action CA20111 for funding my participation.

1/7



Extrinsic formalisation of type theory

2/7



Extrinsic formalisation of type theory

P Untyped terms (AST)

2/7



Extrinsic formalisation of type theory

P Untyped terms (AST)

P> Instantiation of terms by a substitution is a recursively defined function

2/7



Extrinsic formalisation of type theory

P Untyped terms (AST)
P> Instantiation of terms by a substitution is a recursively defined function

P Contexts, typing relation

2/7



Extrinsic formalisation of type theory

P Untyped terms (AST)
P> Instantiation of terms by a substitution is a recursively defined function
P Contexts, typing relation

» Conversion relation

2/7



Extrinsic formalisation of type theory

P Untyped terms (AST)

P> Instantiation of terms by a substitution is a recursively defined function
P Contexts, typing relation

P Conversion relation

P Consequences:

P Substitution laws are definitional

2/7



Extrinsic formalisation of type theory

P Untyped terms (AST)

P> Instantiation of terms by a substitution is a recursively defined function
P Contexts, typing relation

P Conversion relation

P Consequences:

P Substitution laws are definitional

P Universe 3 la Russell is easy

2/7



Extrinsic formalisation of type theory

P Untyped terms (AST)

P> Instantiation of terms by a substitution is a recursively defined function
P Contexts, typing relation

P Conversion relation

P Consequences:

P Substitution laws are definitional
P Universe 3 la Russell is easy

P Low level, ad-hoc choices to make about the implementation

2/7



Extrinsic formalisation of type theory

P Untyped terms (AST)

P> Instantiation of terms by a substitution is a recursively defined function
P Contexts, typing relation

P Conversion relation

P Consequences:

P Substitution laws are definitional
P Universe 3 la Russell is easy
P Low level, ad-hoc choices to make about the implementation

P Too long and tedious to define
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Intrinsic formalisation
P Contexts, types
P Types indexed by contexts
P Terms indexed by contexts and types
P No need for typing relation

P Instantiation is a constructor instead of a function

> data T : Setv/
f:T-A

data T : Set 9
>1‘ T-T '

P Equality constructors for conversion rules e.g. /3
P No need for conversion relation

P Implementation: QIIT, initial GAT, initial CwF with extra structure
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I (A:TyD)=Ty(T>A) =Tyl
] T ABR"=1(AR") (Bly']")

lam :Tm (I'> A) B—Tm 1T (Il A B)
lam[] : transport (Tm A) II[] (lam b [7]*) = lam (b[y"]")

We want definitional substitution laws.
Note: Extrinsic formalisation doesn’t suffer from transport hell.
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(iv) Higher-order abstract syntax (HOAS, LF, SOGAT) (Harper, 2021)
(Bocquet—Kaposi—Sattler, 2023)

P Proofs are internal

P> Metatheoretic step needed to transfer proofs to the real syntax

(v) Fight through transport hell like a real man (Altenkirch—Kaposi, 2016)

We try to do (iii) without hacking.
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Future work:

P We need parallel substitutions for applications, and it is hard to make them all
strict.

P Extension to dependent types.
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