
Strict syntax of type theory via alpha-normalisation

Viktor Bense Ambrus Kaposi Szumi Xie

Eötvös Loránd University

11 June 2024
TYPES, Copenhagen

Thanks to EuroProofNet COST Action CA20111 for funding my participation.

1 / 7



Extrinsic formalisation of type theory

▶ Untyped terms (AST)

▶ Instantiation of terms by a substitution is a recursively defined function

▶ Contexts, typing relation

▶ Conversion relation
▶ Consequences:

▶ Substitution laws are definitional
▶ Universe à la Russell is easy
▶ Low level, ad-hoc choices to make about the implementation
▶ Too long and tedious to define

2 / 7



Extrinsic formalisation of type theory

▶ Untyped terms (AST)

▶ Instantiation of terms by a substitution is a recursively defined function

▶ Contexts, typing relation

▶ Conversion relation
▶ Consequences:

▶ Substitution laws are definitional
▶ Universe à la Russell is easy
▶ Low level, ad-hoc choices to make about the implementation
▶ Too long and tedious to define

2 / 7



Extrinsic formalisation of type theory

▶ Untyped terms (AST)

▶ Instantiation of terms by a substitution is a recursively defined function

▶ Contexts, typing relation

▶ Conversion relation
▶ Consequences:

▶ Substitution laws are definitional
▶ Universe à la Russell is easy
▶ Low level, ad-hoc choices to make about the implementation
▶ Too long and tedious to define

2 / 7



Extrinsic formalisation of type theory

▶ Untyped terms (AST)

▶ Instantiation of terms by a substitution is a recursively defined function

▶ Contexts, typing relation

▶ Conversion relation
▶ Consequences:

▶ Substitution laws are definitional
▶ Universe à la Russell is easy
▶ Low level, ad-hoc choices to make about the implementation
▶ Too long and tedious to define

2 / 7



Extrinsic formalisation of type theory

▶ Untyped terms (AST)

▶ Instantiation of terms by a substitution is a recursively defined function

▶ Contexts, typing relation

▶ Conversion relation

▶ Consequences:
▶ Substitution laws are definitional
▶ Universe à la Russell is easy
▶ Low level, ad-hoc choices to make about the implementation
▶ Too long and tedious to define

2 / 7



Extrinsic formalisation of type theory

▶ Untyped terms (AST)

▶ Instantiation of terms by a substitution is a recursively defined function

▶ Contexts, typing relation

▶ Conversion relation
▶ Consequences:

▶ Substitution laws are definitional

▶ Universe à la Russell is easy
▶ Low level, ad-hoc choices to make about the implementation
▶ Too long and tedious to define

2 / 7



Extrinsic formalisation of type theory

▶ Untyped terms (AST)

▶ Instantiation of terms by a substitution is a recursively defined function

▶ Contexts, typing relation

▶ Conversion relation
▶ Consequences:

▶ Substitution laws are definitional
▶ Universe à la Russell is easy

▶ Low level, ad-hoc choices to make about the implementation
▶ Too long and tedious to define

2 / 7



Extrinsic formalisation of type theory

▶ Untyped terms (AST)

▶ Instantiation of terms by a substitution is a recursively defined function

▶ Contexts, typing relation

▶ Conversion relation
▶ Consequences:

▶ Substitution laws are definitional
▶ Universe à la Russell is easy
▶ Low level, ad-hoc choices to make about the implementation

▶ Too long and tedious to define

2 / 7



Extrinsic formalisation of type theory

▶ Untyped terms (AST)

▶ Instantiation of terms by a substitution is a recursively defined function

▶ Contexts, typing relation

▶ Conversion relation
▶ Consequences:

▶ Substitution laws are definitional
▶ Universe à la Russell is easy
▶ Low level, ad-hoc choices to make about the implementation
▶ Too long and tedious to define

2 / 7



Intrinsic formalisation

▶ Contexts, types
▶ Types indexed by contexts
▶ Terms indexed by contexts and types

▶ No need for typing relation
▶ Instantiation is a constructor instead of a function

▶ data T : Set
f : T → A

✓

▶ data T : Set
f : T → T

?

▶ Equality constructors for conversion rules e.g. 𝛽
▶ No need for conversion relation

▶ Implementation: QIIT, initial GAT, initial CwF with extra structure

3 / 7



Intrinsic formalisation
▶ Contexts, types

▶ Types indexed by contexts
▶ Terms indexed by contexts and types

▶ No need for typing relation
▶ Instantiation is a constructor instead of a function

▶ data T : Set
f : T → A

✓

▶ data T : Set
f : T → T

?

▶ Equality constructors for conversion rules e.g. 𝛽
▶ No need for conversion relation

▶ Implementation: QIIT, initial GAT, initial CwF with extra structure

3 / 7



Intrinsic formalisation
▶ Contexts, types
▶ Types indexed by contexts

▶ Terms indexed by contexts and types
▶ No need for typing relation

▶ Instantiation is a constructor instead of a function

▶ data T : Set
f : T → A

✓

▶ data T : Set
f : T → T

?

▶ Equality constructors for conversion rules e.g. 𝛽
▶ No need for conversion relation

▶ Implementation: QIIT, initial GAT, initial CwF with extra structure

3 / 7



Intrinsic formalisation
▶ Contexts, types
▶ Types indexed by contexts
▶ Terms indexed by contexts and types

▶ No need for typing relation
▶ Instantiation is a constructor instead of a function

▶ data T : Set
f : T → A

✓

▶ data T : Set
f : T → T

?

▶ Equality constructors for conversion rules e.g. 𝛽
▶ No need for conversion relation

▶ Implementation: QIIT, initial GAT, initial CwF with extra structure

3 / 7



Intrinsic formalisation
▶ Contexts, types
▶ Types indexed by contexts
▶ Terms indexed by contexts and types

▶ No need for typing relation

▶ Instantiation is a constructor instead of a function

▶ data T : Set
f : T → A

✓

▶ data T : Set
f : T → T

?

▶ Equality constructors for conversion rules e.g. 𝛽
▶ No need for conversion relation

▶ Implementation: QIIT, initial GAT, initial CwF with extra structure

3 / 7



Intrinsic formalisation
▶ Contexts, types
▶ Types indexed by contexts
▶ Terms indexed by contexts and types

▶ No need for typing relation
▶ Instantiation is a constructor instead of a function

▶ data T : Set
f : T → A

✓

▶ data T : Set
f : T → T

?

▶ Equality constructors for conversion rules e.g. 𝛽
▶ No need for conversion relation

▶ Implementation: QIIT, initial GAT, initial CwF with extra structure

3 / 7



Intrinsic formalisation
▶ Contexts, types
▶ Types indexed by contexts
▶ Terms indexed by contexts and types

▶ No need for typing relation
▶ Instantiation is a constructor instead of a function

▶ data T : Set
f : T → A

✓

▶ data T : Set
f : T → T

?

▶ Equality constructors for conversion rules e.g. 𝛽
▶ No need for conversion relation

▶ Implementation: QIIT, initial GAT, initial CwF with extra structure

3 / 7



Intrinsic formalisation
▶ Contexts, types
▶ Types indexed by contexts
▶ Terms indexed by contexts and types

▶ No need for typing relation
▶ Instantiation is a constructor instead of a function

▶ data T : Set
f : T → A

✓

▶ data T : Set
f : T → T

?

▶ Equality constructors for conversion rules e.g. 𝛽
▶ No need for conversion relation

▶ Implementation: QIIT, initial GAT, initial CwF with extra structure

3 / 7



Intrinsic formalisation
▶ Contexts, types
▶ Types indexed by contexts
▶ Terms indexed by contexts and types

▶ No need for typing relation
▶ Instantiation is a constructor instead of a function

▶ data T : Set
f : T → A

✓

▶ data T : Set
f : T → T

?

▶ Equality constructors for conversion rules e.g. 𝛽
▶ No need for conversion relation

▶ Implementation: QIIT, initial GAT, initial CwF with extra structure

3 / 7



Intrinsic formalisation
▶ Contexts, types
▶ Types indexed by contexts
▶ Terms indexed by contexts and types

▶ No need for typing relation
▶ Instantiation is a constructor instead of a function

▶ data T : Set
f : T → A

✓

▶ data T : Set
f : T → T

?

▶ Equality constructors for conversion rules e.g. 𝛽
▶ No need for conversion relation

▶ Implementation: QIIT, initial GAT, initial CwF with extra structure

3 / 7



Intrinsic formalisation
▶ Contexts, types
▶ Types indexed by contexts
▶ Terms indexed by contexts and types

▶ No need for typing relation
▶ Instantiation is a constructor instead of a function

▶ data T : Set
f : T → A

✓

▶ data T : Set
f : T → T

?

▶ Equality constructors for conversion rules e.g. 𝛽

▶ No need for conversion relation

▶ Implementation: QIIT, initial GAT, initial CwF with extra structure

3 / 7



Intrinsic formalisation
▶ Contexts, types
▶ Types indexed by contexts
▶ Terms indexed by contexts and types

▶ No need for typing relation
▶ Instantiation is a constructor instead of a function

▶ data T : Set
f : T → A

✓

▶ data T : Set
f : T → T

?

▶ Equality constructors for conversion rules e.g. 𝛽
▶ No need for conversion relation

▶ Implementation: QIIT, initial GAT, initial CwF with extra structure

3 / 7



Intrinsic formalisation
▶ Contexts, types
▶ Types indexed by contexts
▶ Terms indexed by contexts and types

▶ No need for typing relation
▶ Instantiation is a constructor instead of a function

▶ data T : Set
f : T → A

✓

▶ data T : Set
f : T → T

?

▶ Equality constructors for conversion rules e.g. 𝛽
▶ No need for conversion relation

▶ Implementation: QIIT, initial GAT, initial CwF with extra structure
3 / 7



Transport hell in the syntax

Π ∶ (𝐴 ∶ Ty Γ) → Ty (Γ▷𝐴) → Ty Γ
Π[] ∶ Π 𝐴 𝐵 [𝛾]𝑇 ≡ Π (𝐴[𝛾]𝑇 ) (𝐵[𝛾+]𝑇 )

lam ∶ Tm (Γ▷𝐴) 𝐵 → Tm Γ (Π 𝐴 𝐵)
lam[] ∶ lam 𝑏 [𝛾]𝑡 ≡ lam (𝑏[𝛾+]𝑡)

We want definitional substitution laws.
Note: Extrinsic formalisation doesn’t suffer from transport hell.

4 / 7



Transport hell in the syntax

Π ∶ (𝐴 ∶ Ty Γ) → Ty (Γ▷𝐴) → Ty Γ
Π[] ∶ Π 𝐴 𝐵 [𝛾]𝑇 ≡ Π (𝐴[𝛾]𝑇 ) (𝐵[𝛾+]𝑇 )

lam ∶ Tm (Γ▷𝐴) 𝐵 → Tm Γ (Π 𝐴 𝐵)
lam[] ∶ lam 𝑏 [𝛾]𝑡 ≡ lam (𝑏[𝛾+]𝑡)

We want definitional substitution laws.
Note: Extrinsic formalisation doesn’t suffer from transport hell.

4 / 7



Transport hell in the syntax

Π ∶ (𝐴 ∶ Ty Γ) → Ty (Γ▷𝐴) → Ty Γ
Π[] ∶ Π 𝐴 𝐵 [𝛾]𝑇 ≡ Π (𝐴[𝛾]𝑇 ) (𝐵[𝛾+]𝑇 )

lam ∶ Tm (Γ▷𝐴) 𝐵 → Tm Γ (Π 𝐴 𝐵)
lam[] ∶ lam 𝑏 [𝛾]𝑡⏟⏟⏟⏟⏟

∶ Tm Δ (Π 𝐴 𝐵 [𝛾]𝑇 )
≡ lam (𝑏[𝛾+]𝑡)⏟⏟⏟⏟⏟

∶ Tm Δ (Π (𝐴[𝛾]𝑇 ) (𝐵[𝛾+]𝑇 )

We want definitional substitution laws.
Note: Extrinsic formalisation doesn’t suffer from transport hell.

4 / 7



Transport hell in the syntax

Π ∶ (𝐴 ∶ Ty Γ) → Ty (Γ▷𝐴) → Ty Γ
Π[] ∶ Π 𝐴 𝐵 [𝛾]𝑇 ≡ Π (𝐴[𝛾]𝑇 ) (𝐵[𝛾+]𝑇 )

lam ∶ Tm (Γ▷𝐴) 𝐵 → Tm Γ (Π 𝐴 𝐵)
lam[] ∶ transport (Tm Δ) Π[] (lam 𝑏 [𝛾]𝑡) ≡ lam (𝑏[𝛾+]𝑡)

We want definitional substitution laws.
Note: Extrinsic formalisation doesn’t suffer from transport hell.

4 / 7



Transport hell in the syntax

Π ∶ (𝐴 ∶ Ty Γ) → Ty (Γ▷𝐴) → Ty Γ
Π[] ∶ Π 𝐴 𝐵 [𝛾]𝑇 ≡ Π (𝐴[𝛾]𝑇 ) (𝐵[𝛾+]𝑇 )

lam ∶ Tm (Γ▷𝐴) 𝐵 → Tm Γ (Π 𝐴 𝐵)
lam[] ∶ transport (Tm Δ) Π[] (lam 𝑏 [𝛾]𝑡) ≡ lam (𝑏[𝛾+]𝑡)

We want definitional substitution laws.

Note: Extrinsic formalisation doesn’t suffer from transport hell.

4 / 7



Transport hell in the syntax

Π ∶ (𝐴 ∶ Ty Γ) → Ty (Γ▷𝐴) → Ty Γ
Π[] ∶ Π 𝐴 𝐵 [𝛾]𝑇 ≡ Π (𝐴[𝛾]𝑇 ) (𝐵[𝛾+]𝑇 )

lam ∶ Tm (Γ▷𝐴) 𝐵 → Tm Γ (Π 𝐴 𝐵)
lam[] ∶ transport (Tm Δ) Π[] (lam 𝑏 [𝛾]𝑡) ≡ lam (𝑏[𝛾+]𝑡)

We want definitional substitution laws.
Note: Extrinsic formalisation doesn’t suffer from transport hell.

4 / 7



Solutions to transport hell
(i) Go back to extrinsic (Abel–Öhman–Vezzosi, 2018)

(ii) Natural models: no indexing of terms by types (Awodey, 2018)(Brunerie–Boer, 2020)

𝑉 𝑒𝑐 𝐴 ∶ ℕ → Set  ⟷ (𝐿𝑖𝑠𝑡 𝐴 ∶ Set) × (𝑙𝑒𝑛𝑔𝑡ℎ ∶ 𝐿𝑖𝑠𝑡 𝐴 → ℕ)
Tm     ∶ Ty → Set ⟷ (Tm  ∶ Set) × (𝑡𝑦  ∶ Tm → Ty)

(iii) Hacks like rewrite rules (Cockx, 2019), shallow embedding (Kaposi–Kovács–Kraus, 2019)

(iv) Higher-order abstract syntax (HOAS, LF, SOGAT) (Harper, 2021)
(Bocquet–Kaposi–Sattler, 2023)

▶ Proofs are internal
▶ Metatheoretic step needed to transfer proofs to the real syntax

(v) Fight through transport hell like a real man (Altenkirch–Kaposi, 2016)

We try to do (iii) without hacking.

5 / 7



Solutions to transport hell
(i) Go back to extrinsic (Abel–Öhman–Vezzosi, 2018)

(ii) Natural models: no indexing of terms by types (Awodey, 2018)(Brunerie–Boer, 2020)

𝑉 𝑒𝑐 𝐴 ∶ ℕ → Set  ⟷ (𝐿𝑖𝑠𝑡 𝐴 ∶ Set) × (𝑙𝑒𝑛𝑔𝑡ℎ ∶ 𝐿𝑖𝑠𝑡 𝐴 → ℕ)
Tm     ∶ Ty → Set ⟷ (Tm  ∶ Set) × (𝑡𝑦  ∶ Tm → Ty)

(iii) Hacks like rewrite rules (Cockx, 2019), shallow embedding (Kaposi–Kovács–Kraus, 2019)

(iv) Higher-order abstract syntax (HOAS, LF, SOGAT) (Harper, 2021)
(Bocquet–Kaposi–Sattler, 2023)

▶ Proofs are internal
▶ Metatheoretic step needed to transfer proofs to the real syntax

(v) Fight through transport hell like a real man (Altenkirch–Kaposi, 2016)

We try to do (iii) without hacking.

5 / 7



Solutions to transport hell
(i) Go back to extrinsic (Abel–Öhman–Vezzosi, 2018)

(ii) Natural models: no indexing of terms by types (Awodey, 2018)(Brunerie–Boer, 2020)

𝑉 𝑒𝑐 𝐴 ∶ ℕ → Set  ⟷ (𝐿𝑖𝑠𝑡 𝐴 ∶ Set) × (𝑙𝑒𝑛𝑔𝑡ℎ ∶ 𝐿𝑖𝑠𝑡 𝐴 → ℕ)

Tm     ∶ Ty → Set ⟷ (Tm  ∶ Set) × (𝑡𝑦  ∶ Tm → Ty)

(iii) Hacks like rewrite rules (Cockx, 2019), shallow embedding (Kaposi–Kovács–Kraus, 2019)

(iv) Higher-order abstract syntax (HOAS, LF, SOGAT) (Harper, 2021)
(Bocquet–Kaposi–Sattler, 2023)

▶ Proofs are internal
▶ Metatheoretic step needed to transfer proofs to the real syntax

(v) Fight through transport hell like a real man (Altenkirch–Kaposi, 2016)

We try to do (iii) without hacking.

5 / 7



Solutions to transport hell
(i) Go back to extrinsic (Abel–Öhman–Vezzosi, 2018)

(ii) Natural models: no indexing of terms by types (Awodey, 2018)(Brunerie–Boer, 2020)

𝑉 𝑒𝑐 𝐴 ∶ ℕ → Set  ⟷ (𝐿𝑖𝑠𝑡 𝐴 ∶ Set) × (𝑙𝑒𝑛𝑔𝑡ℎ ∶ 𝐿𝑖𝑠𝑡 𝐴 → ℕ)
Tm     ∶ Ty → Set ⟷ (Tm  ∶ Set) × (𝑡𝑦  ∶ Tm → Ty)

(iii) Hacks like rewrite rules (Cockx, 2019), shallow embedding (Kaposi–Kovács–Kraus, 2019)

(iv) Higher-order abstract syntax (HOAS, LF, SOGAT) (Harper, 2021)
(Bocquet–Kaposi–Sattler, 2023)

▶ Proofs are internal
▶ Metatheoretic step needed to transfer proofs to the real syntax

(v) Fight through transport hell like a real man (Altenkirch–Kaposi, 2016)

We try to do (iii) without hacking.

5 / 7



Solutions to transport hell
(i) Go back to extrinsic (Abel–Öhman–Vezzosi, 2018)

(ii) Natural models: no indexing of terms by types (Awodey, 2018)(Brunerie–Boer, 2020)

𝑉 𝑒𝑐 𝐴 ∶ ℕ → Set  ⟷ (𝐿𝑖𝑠𝑡 𝐴 ∶ Set) × (𝑙𝑒𝑛𝑔𝑡ℎ ∶ 𝐿𝑖𝑠𝑡 𝐴 → ℕ)
Tm     ∶ Ty → Set ⟷ (Tm  ∶ Set) × (𝑡𝑦  ∶ Tm → Ty)

(iii) Hacks like rewrite rules (Cockx, 2019), shallow embedding (Kaposi–Kovács–Kraus, 2019)

(iv) Higher-order abstract syntax (HOAS, LF, SOGAT) (Harper, 2021)
(Bocquet–Kaposi–Sattler, 2023)

▶ Proofs are internal
▶ Metatheoretic step needed to transfer proofs to the real syntax

(v) Fight through transport hell like a real man (Altenkirch–Kaposi, 2016)

We try to do (iii) without hacking.

5 / 7



Solutions to transport hell
(i) Go back to extrinsic (Abel–Öhman–Vezzosi, 2018)

(ii) Natural models: no indexing of terms by types (Awodey, 2018)(Brunerie–Boer, 2020)

𝑉 𝑒𝑐 𝐴 ∶ ℕ → Set  ⟷ (𝐿𝑖𝑠𝑡 𝐴 ∶ Set) × (𝑙𝑒𝑛𝑔𝑡ℎ ∶ 𝐿𝑖𝑠𝑡 𝐴 → ℕ)
Tm     ∶ Ty → Set ⟷ (Tm  ∶ Set) × (𝑡𝑦  ∶ Tm → Ty)

(iii) Hacks like rewrite rules (Cockx, 2019), shallow embedding (Kaposi–Kovács–Kraus, 2019)

(iv) Higher-order abstract syntax (HOAS, LF, SOGAT) (Harper, 2021)
(Bocquet–Kaposi–Sattler, 2023)

▶ Proofs are internal
▶ Metatheoretic step needed to transfer proofs to the real syntax

(v) Fight through transport hell like a real man (Altenkirch–Kaposi, 2016)

We try to do (iii) without hacking.

5 / 7



Solutions to transport hell
(i) Go back to extrinsic (Abel–Öhman–Vezzosi, 2018)

(ii) Natural models: no indexing of terms by types (Awodey, 2018)(Brunerie–Boer, 2020)

𝑉 𝑒𝑐 𝐴 ∶ ℕ → Set  ⟷ (𝐿𝑖𝑠𝑡 𝐴 ∶ Set) × (𝑙𝑒𝑛𝑔𝑡ℎ ∶ 𝐿𝑖𝑠𝑡 𝐴 → ℕ)
Tm     ∶ Ty → Set ⟷ (Tm  ∶ Set) × (𝑡𝑦  ∶ Tm → Ty)

(iii) Hacks like rewrite rules (Cockx, 2019), shallow embedding (Kaposi–Kovács–Kraus, 2019)

(iv) Higher-order abstract syntax (HOAS, LF, SOGAT) (Harper, 2021)
(Bocquet–Kaposi–Sattler, 2023)

▶ Proofs are internal

▶ Metatheoretic step needed to transfer proofs to the real syntax

(v) Fight through transport hell like a real man (Altenkirch–Kaposi, 2016)

We try to do (iii) without hacking.

5 / 7



Solutions to transport hell
(i) Go back to extrinsic (Abel–Öhman–Vezzosi, 2018)

(ii) Natural models: no indexing of terms by types (Awodey, 2018)(Brunerie–Boer, 2020)

𝑉 𝑒𝑐 𝐴 ∶ ℕ → Set  ⟷ (𝐿𝑖𝑠𝑡 𝐴 ∶ Set) × (𝑙𝑒𝑛𝑔𝑡ℎ ∶ 𝐿𝑖𝑠𝑡 𝐴 → ℕ)
Tm     ∶ Ty → Set ⟷ (Tm  ∶ Set) × (𝑡𝑦  ∶ Tm → Ty)

(iii) Hacks like rewrite rules (Cockx, 2019), shallow embedding (Kaposi–Kovács–Kraus, 2019)

(iv) Higher-order abstract syntax (HOAS, LF, SOGAT) (Harper, 2021)
(Bocquet–Kaposi–Sattler, 2023)

▶ Proofs are internal
▶ Metatheoretic step needed to transfer proofs to the real syntax

(v) Fight through transport hell like a real man (Altenkirch–Kaposi, 2016)

We try to do (iii) without hacking.

5 / 7



Solutions to transport hell
(i) Go back to extrinsic (Abel–Öhman–Vezzosi, 2018)

(ii) Natural models: no indexing of terms by types (Awodey, 2018)(Brunerie–Boer, 2020)

𝑉 𝑒𝑐 𝐴 ∶ ℕ → Set  ⟷ (𝐿𝑖𝑠𝑡 𝐴 ∶ Set) × (𝑙𝑒𝑛𝑔𝑡ℎ ∶ 𝐿𝑖𝑠𝑡 𝐴 → ℕ)
Tm     ∶ Ty → Set ⟷ (Tm  ∶ Set) × (𝑡𝑦  ∶ Tm → Ty)

(iii) Hacks like rewrite rules (Cockx, 2019), shallow embedding (Kaposi–Kovács–Kraus, 2019)

(iv) Higher-order abstract syntax (HOAS, LF, SOGAT) (Harper, 2021)
(Bocquet–Kaposi–Sattler, 2023)

▶ Proofs are internal
▶ Metatheoretic step needed to transfer proofs to the real syntax

(v) Fight through transport hell like a real man (Altenkirch–Kaposi, 2016)

We try to do (iii) without hacking.

5 / 7



Solutions to transport hell
(i) Go back to extrinsic (Abel–Öhman–Vezzosi, 2018)

(ii) Natural models: no indexing of terms by types (Awodey, 2018)(Brunerie–Boer, 2020)

𝑉 𝑒𝑐 𝐴 ∶ ℕ → Set  ⟷ (𝐿𝑖𝑠𝑡 𝐴 ∶ Set) × (𝑙𝑒𝑛𝑔𝑡ℎ ∶ 𝐿𝑖𝑠𝑡 𝐴 → ℕ)
Tm     ∶ Ty → Set ⟷ (Tm  ∶ Set) × (𝑡𝑦  ∶ Tm → Ty)

(iii) Hacks like rewrite rules (Cockx, 2019), shallow embedding (Kaposi–Kovács–Kraus, 2019)

(iv) Higher-order abstract syntax (HOAS, LF, SOGAT) (Harper, 2021)
(Bocquet–Kaposi–Sattler, 2023)

▶ Proofs are internal
▶ Metatheoretic step needed to transfer proofs to the real syntax

(v) Fight through transport hell like a real man (Altenkirch–Kaposi, 2016)

We try to do (iii) without hacking.
5 / 7



This talk: strictification of syntax using 𝛼-normal forms

data isNf  ∶  (Γ  ∶  Con)(𝐴  ∶  Ty Γ) → Tm Γ 𝐴 → Set where
   varNf ∶  (𝑥  ∶  Var Γ 𝐴) → isNf Γ 𝐴 (var 𝑥)
   lamNf ∶  isNf (Γ▷𝐴) 𝐵 𝑏 → isNf Γ (Π 𝐴 𝐵) (lam 𝑏)
   appNf ∶  isNf Γ (Π 𝐴 𝐵) 𝑓 → isNf Γ 𝐴 𝑎 → isNf Γ (𝐵[⟨𝑎⟩]) (𝑎𝑝𝑝 𝑓 𝑎)
   eq ∶  (𝑢𝑁 ∶ isNf Γ 𝐴 𝑢)(𝑣𝑁 ∶ isNf Γ 𝐴 𝑣) → 𝑢 ≡ 𝑣 → 𝑢𝑁 ≡ 𝑣𝑁

norm  ∶  (𝑢  ∶  Tm Γ 𝐴) → isNf Γ 𝐴 𝑢

_ [_ ]𝑁 on terms using 𝛼-normalisation:
_ [_ ]𝑁   ∶  isNf Γ 𝐴 𝑎 → isNfs Δ Γ 𝛾 → (𝑎′  ∶  Tm Δ (𝐴[𝛾]𝑇 )) × (𝑎′ ≡ 𝑎[𝛾]𝑡)

_ [_ ]  ∶  Tm Γ 𝐴 → (𝛾  ∶  Sub Δ Γ) → Tm Δ (𝐴[𝛾]𝑇 )
𝑡 [ 𝛾 ]  ∶= fst (norm 𝑡 [norm𝑆 𝛾]𝑁)

6 / 7



This talk: strictification of syntax using 𝛼-normal forms

data isNf  ∶  (Γ  ∶  Con)(𝐴  ∶  Ty Γ) → Tm Γ 𝐴 → Set where

   varNf ∶  (𝑥  ∶  Var Γ 𝐴) → isNf Γ 𝐴 (var 𝑥)
   lamNf ∶  isNf (Γ▷𝐴) 𝐵 𝑏 → isNf Γ (Π 𝐴 𝐵) (lam 𝑏)
   appNf ∶  isNf Γ (Π 𝐴 𝐵) 𝑓 → isNf Γ 𝐴 𝑎 → isNf Γ (𝐵[⟨𝑎⟩]) (𝑎𝑝𝑝 𝑓 𝑎)
   eq ∶  (𝑢𝑁 ∶ isNf Γ 𝐴 𝑢)(𝑣𝑁 ∶ isNf Γ 𝐴 𝑣) → 𝑢 ≡ 𝑣 → 𝑢𝑁 ≡ 𝑣𝑁

norm  ∶  (𝑢  ∶  Tm Γ 𝐴) → isNf Γ 𝐴 𝑢

_ [_ ]𝑁 on terms using 𝛼-normalisation:
_ [_ ]𝑁   ∶  isNf Γ 𝐴 𝑎 → isNfs Δ Γ 𝛾 → (𝑎′  ∶  Tm Δ (𝐴[𝛾]𝑇 )) × (𝑎′ ≡ 𝑎[𝛾]𝑡)

_ [_ ]  ∶  Tm Γ 𝐴 → (𝛾  ∶  Sub Δ Γ) → Tm Δ (𝐴[𝛾]𝑇 )
𝑡 [ 𝛾 ]  ∶= fst (norm 𝑡 [norm𝑆 𝛾]𝑁)

6 / 7



This talk: strictification of syntax using 𝛼-normal forms

data isNf  ∶  (Γ  ∶  Con)(𝐴  ∶  Ty Γ) → Tm Γ 𝐴 → Set where
   varNf ∶  (𝑥  ∶  Var Γ 𝐴) → isNf Γ 𝐴 (var 𝑥)
   lamNf ∶  isNf (Γ▷𝐴) 𝐵 𝑏 → isNf Γ (Π 𝐴 𝐵) (lam 𝑏)
   appNf ∶  isNf Γ (Π 𝐴 𝐵) 𝑓 → isNf Γ 𝐴 𝑎 → isNf Γ (𝐵[⟨𝑎⟩]) (𝑎𝑝𝑝 𝑓 𝑎)

   eq ∶  (𝑢𝑁 ∶ isNf Γ 𝐴 𝑢)(𝑣𝑁 ∶ isNf Γ 𝐴 𝑣) → 𝑢 ≡ 𝑣 → 𝑢𝑁 ≡ 𝑣𝑁

norm  ∶  (𝑢  ∶  Tm Γ 𝐴) → isNf Γ 𝐴 𝑢

_ [_ ]𝑁 on terms using 𝛼-normalisation:
_ [_ ]𝑁   ∶  isNf Γ 𝐴 𝑎 → isNfs Δ Γ 𝛾 → (𝑎′  ∶  Tm Δ (𝐴[𝛾]𝑇 )) × (𝑎′ ≡ 𝑎[𝛾]𝑡)

_ [_ ]  ∶  Tm Γ 𝐴 → (𝛾  ∶  Sub Δ Γ) → Tm Δ (𝐴[𝛾]𝑇 )
𝑡 [ 𝛾 ]  ∶= fst (norm 𝑡 [norm𝑆 𝛾]𝑁)

6 / 7



This talk: strictification of syntax using 𝛼-normal forms

data isNf  ∶  (Γ  ∶  Con)(𝐴  ∶  Ty Γ) → Tm Γ 𝐴 → Set where
   varNf ∶  (𝑥  ∶  Var Γ 𝐴) → isNf Γ 𝐴 (var 𝑥)
   lamNf ∶  isNf (Γ▷𝐴) 𝐵 𝑏 → isNf Γ (Π 𝐴 𝐵) (lam 𝑏)
   appNf ∶  isNf Γ (Π 𝐴 𝐵) 𝑓 → isNf Γ 𝐴 𝑎 → isNf Γ (𝐵[⟨𝑎⟩]) (𝑎𝑝𝑝 𝑓 𝑎)
   eq ∶  (𝑢𝑁 ∶ isNf Γ 𝐴 𝑢)(𝑣𝑁 ∶ isNf Γ 𝐴 𝑣) → 𝑢 ≡ 𝑣 → 𝑢𝑁 ≡ 𝑣𝑁

norm  ∶  (𝑢  ∶  Tm Γ 𝐴) → isNf Γ 𝐴 𝑢

_ [_ ]𝑁 on terms using 𝛼-normalisation:
_ [_ ]𝑁   ∶  isNf Γ 𝐴 𝑎 → isNfs Δ Γ 𝛾 → (𝑎′  ∶  Tm Δ (𝐴[𝛾]𝑇 )) × (𝑎′ ≡ 𝑎[𝛾]𝑡)

_ [_ ]  ∶  Tm Γ 𝐴 → (𝛾  ∶  Sub Δ Γ) → Tm Δ (𝐴[𝛾]𝑇 )
𝑡 [ 𝛾 ]  ∶= fst (norm 𝑡 [norm𝑆 𝛾]𝑁)

6 / 7



This talk: strictification of syntax using 𝛼-normal forms

data isNf  ∶  (Γ  ∶  Con)(𝐴  ∶  Ty Γ) → Tm Γ 𝐴 → Set where
   varNf ∶  (𝑥  ∶  Var Γ 𝐴) → isNf Γ 𝐴 (var 𝑥)
   lamNf ∶  isNf (Γ▷𝐴) 𝐵 𝑏 → isNf Γ (Π 𝐴 𝐵) (lam 𝑏)
   appNf ∶  isNf Γ (Π 𝐴 𝐵) 𝑓 → isNf Γ 𝐴 𝑎 → isNf Γ (𝐵[⟨𝑎⟩]) (𝑎𝑝𝑝 𝑓 𝑎)
   eq ∶  (𝑢𝑁  𝑣𝑁 ∶ isNf Γ 𝐴 𝑢) → 𝑢𝑁 ≡ 𝑣𝑁

norm  ∶  (𝑢  ∶  Tm Γ 𝐴) → isNf Γ 𝐴 𝑢

_ [_ ]𝑁 on terms using 𝛼-normalisation:
_ [_ ]𝑁   ∶  isNf Γ 𝐴 𝑎 → isNfs Δ Γ 𝛾 → (𝑎′  ∶  Tm Δ (𝐴[𝛾]𝑇 )) × (𝑎′ ≡ 𝑎[𝛾]𝑡)

_ [_ ]  ∶  Tm Γ 𝐴 → (𝛾  ∶  Sub Δ Γ) → Tm Δ (𝐴[𝛾]𝑇 )
𝑡 [ 𝛾 ]  ∶= fst (norm 𝑡 [norm𝑆 𝛾]𝑁)

6 / 7



This talk: strictification of syntax using 𝛼-normal forms

data isNf  ∶  (Γ  ∶  Con)(𝐴  ∶  Ty Γ) → Tm Γ 𝐴 → Set where
   varNf ∶  (𝑥  ∶  Var Γ 𝐴) → isNf Γ 𝐴 (var 𝑥)
   lamNf ∶  isNf (Γ▷𝐴) 𝐵 𝑏 → isNf Γ (Π 𝐴 𝐵) (lam 𝑏)
   appNf ∶  isNf Γ (Π 𝐴 𝐵) 𝑓 → isNf Γ 𝐴 𝑎 → isNf Γ (𝐵[⟨𝑎⟩]) (𝑎𝑝𝑝 𝑓 𝑎)
   eq ∶  (𝑢𝑁  𝑣𝑁 ∶ isNf Γ 𝐴 𝑢) → 𝑢𝑁 ≡ 𝑣𝑁

norm  ∶  (𝑢  ∶  Tm Γ 𝐴) → isNf Γ 𝐴 𝑢

_ [_ ]𝑁 on terms using 𝛼-normalisation:
_ [_ ]𝑁   ∶  isNf Γ 𝐴 𝑎 → isNfs Δ Γ 𝛾 → (𝑎′  ∶  Tm Δ (𝐴[𝛾]𝑇 )) × (𝑎′ ≡ 𝑎[𝛾]𝑡)

_ [_ ]  ∶  Tm Γ 𝐴 → (𝛾  ∶  Sub Δ Γ) → Tm Δ (𝐴[𝛾]𝑇 )
𝑡 [ 𝛾 ]  ∶= fst (norm 𝑡 [norm𝑆 𝛾]𝑁)

6 / 7



This talk: strictification of syntax using 𝛼-normal forms

data isNf  ∶  (Γ  ∶  Con)(𝐴  ∶  Ty Γ) → Tm Γ 𝐴 → Set where
   varNf ∶  (𝑥  ∶  Var Γ 𝐴) → isNf Γ 𝐴 (var 𝑥)
   lamNf ∶  isNf (Γ▷𝐴) 𝐵 𝑏 → isNf Γ (Π 𝐴 𝐵) (lam 𝑏)
   appNf ∶  isNf Γ (Π 𝐴 𝐵) 𝑓 → isNf Γ 𝐴 𝑎 → isNf Γ (𝐵[⟨𝑎⟩]) (𝑎𝑝𝑝 𝑓 𝑎)
   eq ∶  (𝑢𝑁  𝑣𝑁 ∶ isNf Γ 𝐴 𝑢) → 𝑢𝑁 ≡ 𝑣𝑁

norm  ∶  (𝑢  ∶  Tm Γ 𝐴) → isNf Γ 𝐴 𝑢

_ [_ ]𝑁 on terms using 𝛼-normalisation:
_ [_ ]𝑁   ∶  isNf Γ 𝐴 𝑎 → isNfs Δ Γ 𝛾 → (𝑎′  ∶  Tm Δ (𝐴[𝛾]𝑇 )) × (𝑎′ ≡ 𝑎[𝛾]𝑡)

_ [_ ]  ∶  Tm Γ 𝐴 → (𝛾  ∶  Sub Δ Γ) → Tm Δ (𝐴[𝛾]𝑇 )
𝑡 [ 𝛾 ]  ∶= fst (norm 𝑡 [norm𝑆 𝛾]𝑁)

6 / 7



This talk: strictification of syntax using 𝛼-normal forms

data isNf  ∶  (Γ  ∶  Con)(𝐴  ∶  Ty Γ) → Tm Γ 𝐴 → Set where
   varNf ∶  (𝑥  ∶  Var Γ 𝐴) → isNf Γ 𝐴 (var 𝑥)
   lamNf ∶  isNf (Γ▷𝐴) 𝐵 𝑏 → isNf Γ (Π 𝐴 𝐵) (lam 𝑏)
   appNf ∶  isNf Γ (Π 𝐴 𝐵) 𝑓 → isNf Γ 𝐴 𝑎 → isNf Γ (𝐵[⟨𝑎⟩]) (𝑎𝑝𝑝 𝑓 𝑎)
   eq ∶  (𝑢𝑁  𝑣𝑁 ∶ isNf Γ 𝐴 𝑢) → 𝑢𝑁 ≡ 𝑣𝑁

norm  ∶  (𝑢  ∶  Tm Γ 𝐴) → isNf Γ 𝐴 𝑢

_ [_ ]𝑁 on terms using 𝛼-normalisation:
_ [_ ]𝑁   ∶  isNf Γ 𝐴 𝑎 → isNfs Δ Γ 𝛾 → (𝑎′  ∶  Tm Δ (𝐴[𝛾]𝑇 )) × (𝑎′ ≡ 𝑎[𝛾]𝑡)

_ [_ ]  ∶  Tm Γ 𝐴 → (𝛾  ∶  Sub Δ Γ) → Tm Δ (𝐴[𝛾]𝑇 )
𝑡 [ 𝛾 ]  ∶= fst (norm 𝑡 [norm𝑆 𝛾]𝑁)

6 / 7



This talk: strictification of syntax using 𝛼-normal forms

data isNf  ∶  (Γ  ∶  Con)(𝐴  ∶  Ty Γ) → Tm Γ 𝐴 → Set where
   varNf ∶  (𝑥  ∶  Var Γ 𝐴) → isNf Γ 𝐴 (var 𝑥)
   lamNf ∶  isNf (Γ▷𝐴) 𝐵 𝑏 → isNf Γ (Π 𝐴 𝐵) (lam 𝑏)
   appNf ∶  isNf Γ (Π 𝐴 𝐵) 𝑓 → isNf Γ 𝐴 𝑎 → isNf Γ (𝐵[⟨𝑎⟩]) (𝑎𝑝𝑝 𝑓 𝑎)
   eq ∶  (𝑢𝑁  𝑣𝑁 ∶ isNf Γ 𝐴 𝑢) → 𝑢𝑁 ≡ 𝑣𝑁

norm  ∶  (𝑢  ∶  Tm Γ 𝐴) → isNf Γ 𝐴 𝑢

_ [_ ]𝑁 on terms using 𝛼-normalisation:
_ [_ ]𝑁   ∶  isNf Γ 𝐴 𝑎 → isNfs Δ Γ 𝛾 → (𝑎′  ∶  Tm Δ (𝐴[𝛾]𝑇 )) × (𝑎′ ≡ 𝑎[𝛾]𝑡)

_ [_ ]  ∶  Tm Γ 𝐴 → (𝛾  ∶  Sub Δ Γ) → Tm Δ (𝐴[𝛾]𝑇 )
𝑡 [ 𝛾 ]  ∶= fst (norm 𝑡 [norm𝑆 𝛾]𝑁)

6 / 7



This talk: strictification of syntax using 𝛼-normal forms

data isNf  ∶  (Γ  ∶  Con)(𝐴  ∶  Ty Γ) → Tm Γ 𝐴 → Set where
   varNf ∶  (𝑥  ∶  Var Γ 𝐴) → isNf Γ 𝐴 (var 𝑥)
   lamNf ∶  isNf (Γ▷𝐴) 𝐵 𝑏 → isNf Γ (Π 𝐴 𝐵) (lam 𝑏)
   appNf ∶  isNf Γ (Π 𝐴 𝐵) 𝑓 → isNf Γ 𝐴 𝑎 → isNf Γ (𝐵[⟨𝑎⟩]) (𝑎𝑝𝑝 𝑓 𝑎)
   eq ∶  (𝑢𝑁  𝑣𝑁 ∶ isNf Γ 𝐴 𝑢) → 𝑢𝑁 ≡ 𝑣𝑁

norm  ∶  (𝑢  ∶  Tm Γ 𝐴) → isNf Γ 𝐴 𝑢

_ [_ ]𝑁 on terms using 𝛼-normalisation:
_ [_ ]𝑁   ∶  isNf Γ 𝐴 𝑎 → isNfs Δ Γ 𝛾 → (𝑎′  ∶  Tm Δ (𝐴[𝛾]𝑇 )) × (𝑎′ ≡ 𝑎[𝛾]𝑡)

_ [_ ]  ∶  Tm Γ 𝐴 → (𝛾  ∶  Sub Δ Γ) → Tm Δ (𝐴[𝛾]𝑇 )
𝑡 [ 𝛾 ]  ∶= fst (norm 𝑡 [norm𝑆 𝛾]𝑁)

6 / 7



Summary

▶ Implemented in Cubical Agda for STT
▶ using single substitution calculus
▶ weakenings and single substitutions are separated in the syntax
▶ two different substitution operations

▶ All the substitution laws are definitional
▶ we don’t know how to achieve this without separating

▶ Defined strict syntax, proved its induction principle (dependent models have a section)

▶ Derived parallel substitutions (their laws are not strict anymore)
Future work:
▶ We need parallel substitutions for applications, and it is hard to make them all

strict.
▶ Extension to dependent types.

7 / 7



Summary
▶ Implemented in Cubical Agda for STT

▶ using single substitution calculus
▶ weakenings and single substitutions are separated in the syntax
▶ two different substitution operations

▶ All the substitution laws are definitional
▶ we don’t know how to achieve this without separating

▶ Defined strict syntax, proved its induction principle (dependent models have a section)

▶ Derived parallel substitutions (their laws are not strict anymore)
Future work:
▶ We need parallel substitutions for applications, and it is hard to make them all

strict.
▶ Extension to dependent types.

7 / 7



Summary
▶ Implemented in Cubical Agda for STT

▶ using single substitution calculus

▶ weakenings and single substitutions are separated in the syntax
▶ two different substitution operations

▶ All the substitution laws are definitional
▶ we don’t know how to achieve this without separating

▶ Defined strict syntax, proved its induction principle (dependent models have a section)

▶ Derived parallel substitutions (their laws are not strict anymore)
Future work:
▶ We need parallel substitutions for applications, and it is hard to make them all

strict.
▶ Extension to dependent types.

7 / 7



Summary
▶ Implemented in Cubical Agda for STT

▶ using single substitution calculus
▶ weakenings and single substitutions are separated in the syntax

▶ two different substitution operations
▶ All the substitution laws are definitional

▶ we don’t know how to achieve this without separating

▶ Defined strict syntax, proved its induction principle (dependent models have a section)

▶ Derived parallel substitutions (their laws are not strict anymore)
Future work:
▶ We need parallel substitutions for applications, and it is hard to make them all

strict.
▶ Extension to dependent types.

7 / 7



Summary
▶ Implemented in Cubical Agda for STT

▶ using single substitution calculus
▶ weakenings and single substitutions are separated in the syntax
▶ two different substitution operations

▶ All the substitution laws are definitional
▶ we don’t know how to achieve this without separating

▶ Defined strict syntax, proved its induction principle (dependent models have a section)

▶ Derived parallel substitutions (their laws are not strict anymore)
Future work:
▶ We need parallel substitutions for applications, and it is hard to make them all

strict.
▶ Extension to dependent types.

7 / 7



Summary
▶ Implemented in Cubical Agda for STT

▶ using single substitution calculus
▶ weakenings and single substitutions are separated in the syntax
▶ two different substitution operations

▶ All the substitution laws are definitional

▶ we don’t know how to achieve this without separating

▶ Defined strict syntax, proved its induction principle (dependent models have a section)

▶ Derived parallel substitutions (their laws are not strict anymore)
Future work:
▶ We need parallel substitutions for applications, and it is hard to make them all

strict.
▶ Extension to dependent types.

7 / 7



Summary
▶ Implemented in Cubical Agda for STT

▶ using single substitution calculus
▶ weakenings and single substitutions are separated in the syntax
▶ two different substitution operations

▶ All the substitution laws are definitional
▶ we don’t know how to achieve this without separating

▶ Defined strict syntax, proved its induction principle (dependent models have a section)

▶ Derived parallel substitutions (their laws are not strict anymore)
Future work:
▶ We need parallel substitutions for applications, and it is hard to make them all

strict.
▶ Extension to dependent types.

7 / 7



Summary
▶ Implemented in Cubical Agda for STT

▶ using single substitution calculus
▶ weakenings and single substitutions are separated in the syntax
▶ two different substitution operations

▶ All the substitution laws are definitional
▶ we don’t know how to achieve this without separating

▶ Defined strict syntax, proved its induction principle (dependent models have a section)

▶ Derived parallel substitutions (their laws are not strict anymore)
Future work:
▶ We need parallel substitutions for applications, and it is hard to make them all

strict.
▶ Extension to dependent types.

7 / 7



Summary
▶ Implemented in Cubical Agda for STT

▶ using single substitution calculus
▶ weakenings and single substitutions are separated in the syntax
▶ two different substitution operations

▶ All the substitution laws are definitional
▶ we don’t know how to achieve this without separating

▶ Defined strict syntax, proved its induction principle (dependent models have a section)

▶ Derived parallel substitutions (their laws are not strict anymore)

Future work:
▶ We need parallel substitutions for applications, and it is hard to make them all

strict.
▶ Extension to dependent types.

7 / 7



Summary
▶ Implemented in Cubical Agda for STT

▶ using single substitution calculus
▶ weakenings and single substitutions are separated in the syntax
▶ two different substitution operations

▶ All the substitution laws are definitional
▶ we don’t know how to achieve this without separating

▶ Defined strict syntax, proved its induction principle (dependent models have a section)

▶ Derived parallel substitutions (their laws are not strict anymore)
Future work:

▶ We need parallel substitutions for applications, and it is hard to make them all
strict.

▶ Extension to dependent types.

7 / 7



Summary
▶ Implemented in Cubical Agda for STT

▶ using single substitution calculus
▶ weakenings and single substitutions are separated in the syntax
▶ two different substitution operations

▶ All the substitution laws are definitional
▶ we don’t know how to achieve this without separating

▶ Defined strict syntax, proved its induction principle (dependent models have a section)

▶ Derived parallel substitutions (their laws are not strict anymore)
Future work:
▶ We need parallel substitutions for applications, and it is hard to make them all

strict.

▶ Extension to dependent types.

7 / 7



Summary
▶ Implemented in Cubical Agda for STT

▶ using single substitution calculus
▶ weakenings and single substitutions are separated in the syntax
▶ two different substitution operations

▶ All the substitution laws are definitional
▶ we don’t know how to achieve this without separating

▶ Defined strict syntax, proved its induction principle (dependent models have a section)

▶ Derived parallel substitutions (their laws are not strict anymore)
Future work:
▶ We need parallel substitutions for applications, and it is hard to make them all

strict.
▶ Extension to dependent types.

7 / 7


