Strict syntax of type theory via alpha-normalisation

Viktor Bense ~ Ambrus Kaposi ~ Szumi Xie
Eobtvés Lorand University

11 June 2024
TYPES, Copenhagen

Thanks to EuroProofNet COST Action CA20111 for funding my participation.

1/7

Extrinsic formalisation of type theory

2/7

Extrinsic formalisation of type theory

P Untyped terms (AST)

2/7

Extrinsic formalisation of type theory

P Untyped terms (AST)

P> Instantiation of terms by a substitution is a recursively defined function

2/7

Extrinsic formalisation of type theory

P Untyped terms (AST)
P> Instantiation of terms by a substitution is a recursively defined function

P Contexts, typing relation

2/7

Extrinsic formalisation of type theory

P Untyped terms (AST)
P> Instantiation of terms by a substitution is a recursively defined function
P Contexts, typing relation

» Conversion relation

2/7

Extrinsic formalisation of type theory

P Untyped terms (AST)

P> Instantiation of terms by a substitution is a recursively defined function
P Contexts, typing relation

P Conversion relation

P Consequences:

P Substitution laws are definitional

2/7

Extrinsic formalisation of type theory

P Untyped terms (AST)

P> Instantiation of terms by a substitution is a recursively defined function
P Contexts, typing relation

P Conversion relation

P Consequences:

P Substitution laws are definitional

P Universe 3 la Russell is easy

2/7

Extrinsic formalisation of type theory

P Untyped terms (AST)

P> Instantiation of terms by a substitution is a recursively defined function
P Contexts, typing relation

P Conversion relation

P Consequences:

P Substitution laws are definitional
P Universe 3 la Russell is easy

P Low level, ad-hoc choices to make about the implementation

2/7

Extrinsic formalisation of type theory

P Untyped terms (AST)

P> Instantiation of terms by a substitution is a recursively defined function
P Contexts, typing relation

P Conversion relation

P Consequences:

P Substitution laws are definitional
P Universe 3 la Russell is easy
P Low level, ad-hoc choices to make about the implementation

P Too long and tedious to define

2/7

Intrinsic formalisation

3/7

Intrinsic formalisation

P Contexts, types

3/7

Intrinsic formalisation
P Contexts, types
P Types indexed by contexts

3/7

Intrinsic formalisation
P Contexts, types

P Types indexed by contexts
P Terms indexed by contexts and types

3/7

Intrinsic formalisation
P Contexts, types
P Types indexed by contexts
P Terms indexed by contexts and types

P No need for typing relation

3/7

Intrinsic formalisation
P Contexts, types
P Types indexed by contexts
P Terms indexed by contexts and types
P No need for typing relation

P Instantiation is a constructor instead of a function

3/7

Intrinsic formalisation
P Contexts, types
P Types indexed by contexts
P Terms indexed by contexts and types
P No need for typing relation

P Instantiation is a constructor instead of a function

,dataT:Set
f:T-A

3/7

Intrinsic formalisation
P Contexts, types
P Types indexed by contexts
P Terms indexed by contexts and types
P No need for typing relation

P Instantiation is a constructor instead of a function

,dataT:Set\/
f:T-A

3/7

Intrinsic formalisation
P Contexts, types
P Types indexed by contexts
P Terms indexed by contexts and types
P No need for typing relation

P Instantiation is a constructor instead of a function

,dataT:Set\/
f:T-A
data T : Set

3/7

Intrinsic formalisation
P Contexts, types
P Types indexed by contexts
P Terms indexed by contexts and types
P No need for typing relation

P Instantiation is a constructor instead of a function

,dataT:Set\/
f:T-A
data T : Set 9

3/7

Intrinsic formalisation
P Contexts, types
P Types indexed by contexts
P Terms indexed by contexts and types
P No need for typing relation

P Instantiation is a constructor instead of a function

> data T : Setv/
f:T-A

data T : Set 9
>f T-T '

P Equality constructors for conversion rules e.g. /3

3/7

Intrinsic formalisation
P Contexts, types
P Types indexed by contexts
P Terms indexed by contexts and types
P No need for typing relation

P Instantiation is a constructor instead of a function

> data T : Setv/
f:T-A

data T : Set 9
>f T-T '

P Equality constructors for conversion rules e.g. /3

P No need for conversion relation

3/7

Intrinsic formalisation
P Contexts, types
P Types indexed by contexts
P Terms indexed by contexts and types
P No need for typing relation

P Instantiation is a constructor instead of a function

> data T : Setv/
f:T-A

data T : Set 9
>1‘ T-T '

P Equality constructors for conversion rules e.g. /3
P No need for conversion relation

P Implementation: QIIT, initial GAT, initial CwF with extra structure

3/7

Transport hell in the syntax

4/7

Transport hell in the syntax

I :(A:TyD)=Ty(T>A) =Tyl
] T ABR"=1(AR]") (Bly']")

lam :Tm (I'>A) B—Tm [(I A B)
lam[] : lam b [y]* = lam (b[y*]*)

4/7

Transport hell in the syntax

I ::(A:TylH)>TyT>A) —>TyD
0] LA B [T =1 (ANT) (Bly*']T)

lam :Tm (I'> A) B—Tm I (Il A B)

am): Embp) = lam O]
:TmA (M ABRT) :TmA (I1 (A[Y)T) (By*H]T)

4/7

Transport hell in the syntax

lam

lam]]

(A:TyD) Ty (T'>A) - Ty T
LA B [y]" =11 (Ay]") (B[y']")

:Tm (I'>A) B— Tm T (Il A B)
: transport (Tm A) TI[] (lam b [7]*) = lam (b[y*]})

4/7

Transport hell in the syntax

I (A:TyD)=Ty(T>A) =Tyl
] T ABR"=1(AR") (Bly']")

lam :Tm (I'> A) B—Tm 1T (Il A B)
lam(] : transport (Tm A) II[] (lam b [v]*) = lam (b[y"]")

We want definitional substitution laws.

4/7

Transport hell in the syntax

I (A:TyD)=Ty(T>A) =Tyl
] T ABR"=1(AR") (Bly']")

lam :Tm (I'> A) B—Tm 1T (Il A B)
lam[] : transport (Tm A) II[] (lam b [7]*) = lam (b[y"]")

We want definitional substitution laws.
Note: Extrinsic formalisation doesn’t suffer from transport hell.

4/7

Solutions to transport hell

(i) Go back to extrinsic (Abel-Ohman—Vezzosi, 2018)

5/7

Solutions to transport hell

(i) Go back to extrinsic (Abel-Ohman—Vezzosi, 2018)

(ii) Natural models: no indexing of terms by types (Awodey, 2018)(Brunerie-Boer, 2020)

5/7

Solutions to transport hell

(i) Go back to extrinsic (Abel-Ohman—Vezzosi, 2018)
(ii) Natural models: no indexing of terms by types (Awodey, 2018)(Brunerie-Boer, 2020)

Vec A: N — Set <— (List A : Set) x (length : List A — N)

5/7

Solutions to transport hell

(i) Go back to extrinsic (Abel-Ohman—Vezzosi, 2018)
(ii) Natural models: no indexing of terms by types (Awodey, 2018)(Brunerie-Boer, 2020)

Vec A: N — Set <— (List A : Set) x (length : List A — N)
Tm Ty —Set<«+— (Tm :Set) x (ty : Tm — Ty)

5/7

Solutions to transport hell

(i) Go back to extrinsic (Abel-Ohman—Vezzosi, 2018)
(ii) Natural models: no indexing of terms by types (Awodey, 2018)(Brunerie-Boer, 2020)

Vec A: N — Set <— (List A : Set) x (length : List A — N)
Tm Ty —Set<«+— (Tm :Set) x (ty : Tm — Ty)

(iii) Hacks like rewrite rules (Cockx, 2019), shallow embedding (Kaposi—-Kovacs—Kraus, 2019)

5/7

Solutions to transport hell

(i) Go back to extrinsic (Abel-Ohman—Vezzosi, 2018)
(ii) Natural models: no indexing of terms by types (Awodey, 2018)(Brunerie-Boer, 2020)
Vec A: N — Set <— (List A : Set) x (length : List A — N)
Tm Ty —Set<«+— (Tm :Set) x (ty : Tm — Ty)
(iii) Hacks like rewrite rules (Cockx, 2019), shallow embedding (Kaposi—-Kovacs—Kraus, 2019)

(iv) Higher-order abstract syntax (HOAS, LF, SOGAT) (Harper, 2021)
(Bocquet—Kaposi—Sattler, 2023)

5/7

Solutions to transport hell

(i) Go back to extrinsic (Abel-Ohman—Vezzosi, 2018)
(ii) Natural models: no indexing of terms by types (Awodey, 2018)(Brunerie-Boer, 2020)

Vec A: N — Set <— (List A : Set) x (length : List A — N)
Tm Ty —Set<«+— (Tm :Set) x (ty : Tm — Ty)

(iii) Hacks like rewrite rules (Cockx, 2019), shallow embedding (Kaposi—-Kovacs—Kraus, 2019)

(iv) Higher-order abstract syntax (HOAS, LF, SOGAT) (Harper, 2021)
(Bocquet—Kaposi—Sattler, 2023)

P Proofs are internal

5/7

Solutions to transport hell

(i) Go back to extrinsic (Abel-Ohman—Vezzosi, 2018)
(ii) Natural models: no indexing of terms by types (Awodey, 2018)(Brunerie-Boer, 2020)
Vec A: N — Set <— (List A : Set) x (length : List A — N)
Tm Ty —Set<«+— (Tm :Set) x (ty : Tm — Ty)
(iii) Hacks like rewrite rules (Cockx, 2019), shallow embedding (Kaposi—-Kovacs—Kraus, 2019)

(iv) Higher-order abstract syntax (HOAS, LF, SOGAT) (Harper, 2021)
(Bocquet—Kaposi—Sattler, 2023)

P Proofs are internal

P> Metatheoretic step needed to transfer proofs to the real syntax

5/7

Solutions to transport hell

(i) Go back to extrinsic (Abel-Ohman—Vezzosi, 2018)
(ii) Natural models: no indexing of terms by types (Awodey, 2018)(Brunerie-Boer, 2020)

Vec A: N — Set <— (List A : Set) x (length : List A — N)
Tm Ty —Set<«+— (Tm :Set) x (ty : Tm — Ty)

(iii) Hacks like rewrite rules (Cockx, 2019), shallow embedding (Kaposi—-Kovacs—Kraus, 2019)

(iv) Higher-order abstract syntax (HOAS, LF, SOGAT) (Harper, 2021)
(Bocquet—Kaposi—Sattler, 2023)

P Proofs are internal

P> Metatheoretic step needed to transfer proofs to the real syntax

(v) Fight through transport hell like a real man (Altenkirch—Kaposi, 2016)

5/7

Solutions to transport hell

(i) Go back to extrinsic (Abel-Ohman—Vezzosi, 2018)
(ii) Natural models: no indexing of terms by types (Awodey, 2018)(Brunerie-Boer, 2020)

Vec A: N — Set <— (List A : Set) x (length : List A — N)
Tm Ty —Set<«+— (Tm :Set) x (ty : Tm — Ty)

(iii) Hacks like rewrite rules (Cockx, 2019), shallow embedding (Kaposi—-Kovacs—Kraus, 2019)

(iv) Higher-order abstract syntax (HOAS, LF, SOGAT) (Harper, 2021)
(Bocquet—Kaposi—Sattler, 2023)

P Proofs are internal

P> Metatheoretic step needed to transfer proofs to the real syntax

(v) Fight through transport hell like a real man (Altenkirch—Kaposi, 2016)

We try to do (iii) without hacking.

5/7

This talk: strictification of syntax using a-normal forms

6/7

This talk: strictification of syntax using a-normal forms

dataisNf : (I' : Con)(A : TyI') - Tm I' A — Set where

6/7

This talk: strictification of syntax using a-normal forms

dataisNf : (I' : Con)(A : TyI') - Tm I' A — Set where
varNf : (z : VarI' A) —» isNf I" A (var)
lamNf : isNf (D> A) B b — isNf ' (II A B) (lam b)
appNf : isNfI' (IT A B) f — isNfI" A a — isNf " (B[{(a)]) (app f a)

6/7

This talk: strictification of syntax using a-normal forms

dataisNf : (I' : Con)(A : TyI') - Tm I' A — Set where
varNf : (z : VarI' A) —» isNf I" A (var)
lamNf : isNf (D> A) B b — isNf ' (II A B) (lam b)
appNf : isNfI' (IT A B) f — isNfI" A a — isNf " (B[{(a)]) (app f a)
eq : (uN cisNFT A w) (o :isNfFT Av) mu=0v — ol =0V

6/7

This talk: strictification of syntax using a-normal forms

dataisNf : (I' : Con)(A : TyI') - Tm I' A — Set where
varNf : (z : VarI' A) —» isNf I" A (var)
lamNf : isNf (D> A) B b — isNf ' (II A B) (lam b)
appNf : isNfI' (IT A B) f — isNfI" A a — isNf " (B[{(a)]) (app f a)

eq c (uN N isNFT A w) — uN = ol

6/7

This talk: strictification of syntax using a-normal forms

dataisNf : (I' : Con)(A : TyI') - Tm I' A — Set where
varNf : (z : VarI' A) —» isNf I" A (var)
lamNf : isNf (D> A) B b — isNf ' (II A B) (lam b)
appNf : isNfI' (IT A B) f — isNfI" A a — isNf " (B[{(a)]) (app f a)

eq c (uN N isNFT A w) — uN = ol

norm : (u : TmT A) = isNfT" A w

6/7

This talk: strictification of syntax using a-normal forms

dataisNf : (I' : Con)(A : TyI') - Tm I' A — Set where
varNf : (z : VarI' A) —» isNf I" A (var)
lamNf : isNf (D> A) B b — isNf ' (II A B) (lam b)
appNf : isNfI' (IT A B) f — isNfI" A a — isNf " (B[{(a)]) (app f a)

eq c (uN N isNFT A w) — uN = ol

norm : (u : TmT A) = isNfT" Aw

[]" on terms using a-normalisation:
[V s isNFT Aa—isNfs AT v — (¢ : Tm A (A[Y]T)) x (o’ = a[y]?)

6/7

This talk: strictification of syntax using a-normal forms

dataisNf : (I' : Con)(A : TyI') - Tm I' A — Set where
varNf : (z : VarI' A) —» isNf I" A (var)
lamNf : isNf (D> A) B b — isNf ' (II A B) (lam b)
appNf : isNfI' (IT A B) f — isNfI" A a — isNf " (B[{(a)]) (app f a)

eq c (uN N isNFT A w) — uN = ol

norm : (u : TmT A) = isNfT" Aw

[]" on terms using a-normalisation:
[V s isNFT Aa—isNfs AT v — (¢ : Tm A (A[Y]T)) x (o’ = a[y]?)

_[]: TmT A= (y : SubAT)—Tm A (AR]7)
t [~] :=fst (norm t [norm® ~]V)

6/7

This talk: strictification of syntax using a-normal forms

dataisNf : (I' : Con)(A : TyI') - Tm I' A — Set where
varNf : (z : VarI' A) —» isNf I" A (var)
lamNf : isNf (D> A) B b — isNf ' (II A B) (lam b)
appNf : isNfI' (IT A B) f — isNfI" A a — isNf " (B[{(a)]) (app f a)

eq c (uN N isNFT A w) — uN = ol

norm : (u : TmT A) = isNfT" Aw

[]" on terms using a-normalisation:
[V s isNFT Aa—isNfs AT v — (¢ : Tm A (A[Y]T)) x (o’ = a[y]?)

_[]: TmT A= (y : SubAT)—Tm A (AR]7)
t [~] :=fst (norm t [norm® ~]V)

6/7

This talk: strictification of syntax using a-normal forms

dataisNf : (I' : Con)(A : TyI') - Tm I' A — Set where
varNf : (z : VarI' A) —» isNf I" A (var)
lamNf : isNf (D> A) B b — isNf ' (II A B) (lam b)
appNf : isNfI' (IT A B) f — isNfI" A a — isNf " (B[{(a)]) (app f a)

eq c (uN N isNFT A w) — uN = ol

norm : (u : TmT A) = isNfT" Aw

[]" on terms using a-normalisation:
[V s isNFT Aa—isNfs AT v — (¢ : Tm A (A[Y]T)) x (o’ = a[y]?)

_[]: TmT A= (y : SubAT)—Tm A (AR]7)
t [~] :=fst (norm t [norm® ~]V)

6/7

Summary

7/7

Summary
P Implemented in Cubical Agda for STT

7/7

Summary
P Implemented in Cubical Agda for STT

P using single substitution calculus

7/7

Summary
P Implemented in Cubical Agda for STT

P using single substitution calculus
P> weakenings and single substitutions are separated in the syntax

7/7

Summary
P Implemented in Cubical Agda for STT

P using single substitution calculus
P> weakenings and single substitutions are separated in the syntax
P two different substitution operations

7/7

Summary
P Implemented in Cubical Agda for STT

P using single substitution calculus
P> weakenings and single substitutions are separated in the syntax
P two different substitution operations

P All the substitution laws are definitional

7/7

Summary
P Implemented in Cubical Agda for STT

P using single substitution calculus
P> weakenings and single substitutions are separated in the syntax
P two different substitution operations

P All the substitution laws are definitional

P we don't know how to achieve this without separating

7/7

Summary
P Implemented in Cubical Agda for STT

P using single substitution calculus
P> weakenings and single substitutions are separated in the syntax
P two different substitution operations

P All the substitution laws are definitional

P we don't know how to achieve this without separating

P> Defined strict syntax, proved its induction principle (dependent models have a section)

7/7

Summary
P Implemented in Cubical Agda for STT

P using single substitution calculus
P> weakenings and single substitutions are separated in the syntax
P two different substitution operations

P All the substitution laws are definitional

P we don't know how to achieve this without separating
P> Defined strict syntax, proved its induction principle (dependent models have a section)

P Derived parallel substitutions (their laws are not strict anymore)

7/7

Summary
P Implemented in Cubical Agda for STT

P using single substitution calculus
P> weakenings and single substitutions are separated in the syntax
P two different substitution operations

P All the substitution laws are definitional

P we don't know how to achieve this without separating
P> Defined strict syntax, proved its induction principle (dependent models have a section)
P Derived parallel substitutions (their laws are not strict anymore)

Future work:

7/7

Summary
P Implemented in Cubical Agda for STT

P using single substitution calculus
P> weakenings and single substitutions are separated in the syntax
P two different substitution operations

P All the substitution laws are definitional
P we don't know how to achieve this without separating
P> Defined strict syntax, proved its induction principle (dependent models have a section)
P Derived parallel substitutions (their laws are not strict anymore)
Future work:

P We need parallel substitutions for applications, and it is hard to make them all
strict.

7/7

Summary
P Implemented in Cubical Agda for STT

P using single substitution calculus
P> weakenings and single substitutions are separated in the syntax
P two different substitution operations

P All the substitution laws are definitional
P we don't know how to achieve this without separating
P> Defined strict syntax, proved its induction principle (dependent models have a section)
P Derived parallel substitutions (their laws are not strict anymore)
Future work:

P We need parallel substitutions for applications, and it is hard to make them all
strict.

P Extension to dependent types.

7/7

