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Extrinsic formalisation of type theory

▶ Untyped terms (AST)

▶ Instantiation of terms by a substitution is a recursively defined function

▶ Contexts, typing relation

▶ Conversion relation
▶ Consequences:

▶ Substitution laws are definitional
▶ Universe à la Russell is easy
▶ Low level, ad-hoc choices to make about the implementation
▶ Too long and tedious to define
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Intrinsic formalisation

▶ Contexts, types
▶ Types indexed by contexts
▶ Terms indexed by contexts and types

▶ No need for typing relation
▶ Instantiation is a constructor instead of a function

▶ data T : Set
f : T → A

✓

▶ data T : Set
f : T → T

?

▶ Equality constructors for conversion rules e.g. 𝛽
▶ No need for conversion relation

▶ Implementation: QIIT, initial GAT, initial CwF with extra structure
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Transport hell in the syntax

Π ∶ (𝐴 ∶ Ty Γ) → Ty (Γ▷𝐴) → Ty Γ
Π[] ∶ Π 𝐴 𝐵 [𝛾]𝑇 ≡ Π (𝐴[𝛾]𝑇 ) (𝐵[𝛾+]𝑇 )

lam ∶ Tm (Γ▷𝐴) 𝐵 → Tm Γ (Π 𝐴 𝐵)
lam[] ∶ lam 𝑏 [𝛾]𝑡 ≡ lam (𝑏[𝛾+]𝑡)

We want definitional substitution laws.
Note: Extrinsic formalisation doesn’t suffer from transport hell.
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Solutions to transport hell
(i) Go back to extrinsic (Abel–Öhman–Vezzosi, 2018)

(ii) Natural models: no indexing of terms by types (Awodey, 2018)(Brunerie–Boer, 2020)

𝑉 𝑒𝑐 𝐴 ∶ ℕ → Set  ⟷ (𝐿𝑖𝑠𝑡 𝐴 ∶ Set) × (𝑙𝑒𝑛𝑔𝑡ℎ ∶ 𝐿𝑖𝑠𝑡 𝐴 → ℕ)
Tm     ∶ Ty → Set ⟷ (Tm  ∶ Set) × (𝑡𝑦  ∶ Tm → Ty)

(iii) Hacks like rewrite rules (Cockx, 2019), shallow embedding (Kaposi–Kovács–Kraus, 2019)

(iv) Higher-order abstract syntax (HOAS, LF, SOGAT) (Harper, 2021)
(Bocquet–Kaposi–Sattler, 2023)

▶ Proofs are internal
▶ Metatheoretic step needed to transfer proofs to the real syntax

(v) Fight through transport hell like a real man (Altenkirch–Kaposi, 2016)

We try to do (iii) without hacking.
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This talk: strictification of syntax using 𝛼-normal forms

data isNf  ∶  (Γ  ∶  Con)(𝐴  ∶  Ty Γ) → Tm Γ 𝐴 → Set where
   varNf ∶  (𝑥  ∶  Var Γ 𝐴) → isNf Γ 𝐴 (var 𝑥)
   lamNf ∶  isNf (Γ▷𝐴) 𝐵 𝑏 → isNf Γ (Π 𝐴 𝐵) (lam 𝑏)
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Summary

▶ Implemented in Cubical Agda for STT
▶ using single substitution calculus
▶ weakenings and single substitutions are separated in the syntax
▶ two different substitution operations

▶ All the substitution laws are definitional
▶ we don’t know how to achieve this without separating

▶ Defined strict syntax, proved its induction principle (dependent models have a section)

▶ Derived parallel substitutions (their laws are not strict anymore)
Future work:
▶ We need parallel substitutions for applications, and it is hard to make them all

strict.
▶ Extension to dependent types.
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